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1 INTRODUCTION
5G networks are envisioned to support various emerging use cases,
such as telemedicine, remote construction, autonomous driving,
industrial automation, drone control, and immersive entertainment.
These applications demand low latency, high reliability, and in
some cases require ultra-high-bandwidths. Specifically, these ap-
plications require 5G networks to provide 1ms end-to-end latency
with 99.99% reliability [12] for ultra-reliable low-latency commu-
nications (URLLC). Various studies [11, 19, 26] have shown that
the radio access network (RAN) remains the bottleneck in realizing
low-latency communications.

The 5G RAN consists of three main components [4], namely the
Radio Unit (RU) [21], the Distributed Unit (DU), and the Centralized
Unit (DU). Fig. 1a shows a CU connected to multiple DUs as it acts
as their primary logic unit in a disaggregated RAN deployment.
Additionally, CU acts as the “gateway” between the Core Network
and the RAN/User Equipment (UE) as it sees all user data as well
as control data in the network.

Network operators have also adopted virtualization in the 5G
RAN to support a large number of use cases with varying require-
ments. While virtualization offers operational flexibility and po-
tential for continuous evolution using commodity hardware like
general-purpose processors (GPPs), it also introduces communi-
cation and processing overheads that compound the challenges
in a disaggregated RAN deployment. Despite efforts to optimize
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Figure 1: DisaggregatedRANand 5GNewRadio (NR) protocol
stack. In this work, we focus on the CU-UP.

performance, GPPs still face challenges in satisfying the perfor-
mance SLAs, i.e., “taming the tail” [5, 18]. Additionally, GPPs have
poor scalability and hence cannot support high network bandwidth
demand without significant cost [20]. To address these limitations,
hardware accelerators such as FPGAs [16], and GPUs [17] are in-
troduced to complement GPPs, especially for the computationally
intensive PHY layer processing in the DU [25]. However, the scala-
bility of the CU, which serves as the aggregation point of the RAN,
has not received sufficient attention despite the massive data rates
expected in 5G networks. Therefore, the implementation of highly
scalable hardware-accelerated CUs, becomes crucial for supporting
5G applications, especially URLLC applications with strict latency
and reliability constraints.

The CU [4] consists of two parts, i.e., the control plane (CU-CP)
and the user plane (CU-UP). The CU-CP is tasked with Radio Re-
source Control (RRC) [3] in managing UE connections to the RAN,
whereas the CU-UP is responsible for the higher layers of the 5G
New Radio (NR) stack (Fig. 1b) – Service Data Adaptation Protocol
(SDAP), and the Packet Data Convergence Protocol (PDCP) [2].
The SDAP mainly deals with QoS flow mapping, while the PDCP
is more complex with functionalities like transmission buffering,
packet re-ordering, packet de-/duplication, header compression,
ciphering, and integrity verification. SDAP and PDCP layers aside,
the CU-UP also handles GPRS Tunneling Protocol (GTP) [1] tunnel
encap/decap for the DU ⇔ CU and CU ⇔ UPF traffic. In this work,
we focus on functions in the CU-UP.

Our key insight here is that key CU functionalities are similar to
traditional packet processing functions like table lookup, header
modification, tunnel encap/decap, sequencing, and multicast that
can be implemented using programmable switches. However, not
all functionalities can be (efficiently) realized on programmable
switches due to the limited hardware capabilities of these switches
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Figure 2: 5G testbed and CUP4 prototype. We show the GPP-
based slow path and the Tofino2-based fast path.

to ensure high-speed processing with strict latency guarantees.
For instance, ciphering and integrity verification. That said, the
standards [3] allow room for concessions on selectively enabling
or disabling certain functionalities at the PDCP layer while main-
taining a fully functional RAN. This leaves the opportunity open
for a multi-Tbps CU-UP running on programmable switches for
use cases/ users that do not require more complex functionalities.
For instance, ciphering (which is more computationally intensive)
may not be needed given the predominantly encrypted application
traffic. Despite so, there are cases where a subset of users require
PDCP features that are not available on the hardware-accelerated
CU. Thus, full-fledged software CU fallbacks are still necessary to
maintain comprehensive support at the CU.

To that end, we present CUP4, a hierarchical CU design with a
fast path using programmable switches and a slow path using GPPs.
CUP4 enables the offloading of user-plane traffic, whenever possible,
at the CU to support mobile users at a greater scale – one CUP4
instance can easily support orders more DUs. CUP4 provides added
flexibility for network operators to delegate users who are latency
sensitive (e.g., URLLC) as well as throughput sensitive to benefit
from the line-rate packet processing capability of programmable
switches.

2 CUP4: PROTOTYPE IMPLEMENTATION
Our 5G standalone (SA) testbed uses the open-source OpenAirIn-
terface (OAI) [15] 5G RAN [10] and the OAI 5G Core [9]. We deploy
them across three commodity servers (with dual 16-core Intel Xeon
Gold 6326 CPUs @ 2.9 GHz, with the power governor set to perfor-
mance mode) connected to an Intel Tofino2 [7] switch (see Fig. 2).
The radio front-end used was the USRP B210 USB Software Defined
Radio from Ettus Research [23]. We used two UEs equipped with
Quectel RM500Q-GL (Qualcomm X55) 5G modules [22].

Our current CUP4 prototype does not modify the OAI CU. Instead,
we passively monitor1 both DU⇔ CU and CU⇔ UPF bidirectional
traffic using an offloading daemon (∼300 lines of Python) to iden-
tify traffic that can be offloaded to the fast path. In particular, the
GTP Tunnel Endpoint Identifier (TEID), N-PDU number (NPDU),
Sequence Number (SeqNum) in the GTP header, and the QoS Flow
Indicator (QFI) in the GTP extension header are modified by the fast
path based on how it is done at the slow path. We implement the CU
functionality on an Intel Tofino2 [7] programmable switch in ∼400
lines of P4 [6] as the fast path. Similar to the slow path, the fast path
does the necessary header modifications, GTP tunnel encap/decap,
and sequencing as configured by the daemon into the match-action
tables on the programmable switch. The sequence numbers are

1We disable ciphering protection at the PDCP for the digital radio bearers (DRB) and
thus are able to observe the interactions in the clear.

Table 1: CU processing latency.

Latency Fast Path (in `s) Slow Path (in `s)
Median 0.52 40.05
99%-ile 0.60 15,040.45
99.9%-ile 0.61 34,000.19

kept track of using register arrays. In addition, the fast path rule en-
tries are also configured with aging timers to automatically remove
inactive rules, i.e., when a UE goes idle.

As our approach transparently offloads traffic from the OAI CU
software slow path onto the Tofino2 ASIC fast path, the RRC layer
at the CU-CP is unaware of the fast path. This results in the RRC
eventually treating the offloaded flows at the fast path as "idle" and
subsequently releasing the radio connection, thus disconnecting
the user. To solve that, the CUP4 fast path periodically mirrors a
copy of the offloaded traffic of a user to the slow path to “refresh”
the RRC timer.

3 PRELIMINARY EVALUATION
First, we perform functional verifications on CUP4 in our 5G testbed.
With live user traffic, when the offloading daemon is enabled, we
verify that CUP4 transparently offloads user traffic from the slow
path onto the fast path with no disruption. Then, we measure
the processing latency of the software OAI CU (slow path) and
CUP4 (fast path). Packets are timestamped using the programmable
switch and mirrored to an external collector for analysis. Traffic
is generated with the UE running an iPerf3 client transmitting a
1 GB file over UDP to an edge-located iPerf3 server connected
to the 5G core. Preliminary evaluations (see Table 1) show that
the slow path has a noticeably higher processing latency (up to
80X difference, at the median) and exhibits a significantly long tail
latency (up to 25, 000X, at the 99𝑡ℎ-percentile) as compared to the
Intel Tofino2-based fast path.

4 FUTUREWORK
CUP4 presents an early prototype for a hardware-accelerated CU by
introducing a fast path that offloads the user plane (CU-UP) trans-
parently onto programmable switches. As a proof-of-concept, CUP4
currently only supports the key functionalities of the CU, e.g., GTP
encap/decap, and PDCP sequencing. We continue to explore how
CUP4 can support more PDCP and SDAP functions in the Tofino2-
based fast path, e.g., transmission buffering, header compression [8],
reordering [14, 24], and deduplication [13] while being integrated
with the CU-CP over the standardized E1 interface [4] alongside the
software OAI CU implementation. Notwithstanding, larger-scale
evaluations, and more complex RAN topologies (e.g., more DUs)
will be looked into. We believe CUP4 is the necessary step forward
towards the 5G 1 ms end-to-end latencies grand ambition.
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